
blastFoam Theory and User Guide
Version 2.0.0

Jeff Heylmun, Peter Vonk
and Timothy Brewer

Synthetik Applied Technologies
info@synthetik-technologies.com

https://github.com/synthetik-technologies/blastFoam

October 30, 2019

Abstract

blastFoam is an open-source toolbox for simulating detonations
based on the OpenFOAM R©1 framework [OpenCFD Ltd., 2018]. blast-
Foam provides solutions to the five equation model for multi-phase
compressible flow, and is based on the work of Zheng et al. [2011]
and Shyue [2001]. blastFoam provides implementations of the es-
sential numerical methods (e.g. 2nd and 3rd order schemes), equa-
tions of state (e.g. Jones-Wilkins-Lee, Ideal Gas, Stiffened Gas, Tait,
Cochran Chan, and Van der Waals), run-time selectable flux schemes
(e.g. HLL, HLLC, AUSM+, Kurganov/Tadmor) and high-order ex-
plicit time integration (e.g. 2nd, 3rd and 4th order). blastFoam pro-
vides a simplified burn model to simulate activation of energetic ma-
terials, and supports multi-point initiation and multi-material detona-
tion; and includes an enhanced implementation of the JWL equation
of state suitable for modeling afterburn.

1DISCLAIMER: This offering is not approved or endorsed by OpenCFD Limited, pro-
ducer and distributor of the OpenFOAM software via www.openfoam.com, and owner of
the OPENFOAM and OpenCFD trade marks.

1

info@synthetik-technologies.com
https://github.com/synthetik-technologies/blastFoam

Contents

1 Introduction 4
1.1 System Requirements . 4
1.2 Downloading . 4
1.3 Compilation . 4
1.4 Executable . 4
1.5 Getting Help . 5

2 Governing equations 6

3 Equation of states 7
3.1 Ideal gas (idealGas) . 9
3.2 Generalized van der Waals gas (vanderWaals) 9
3.3 Tait . 10
3.4 Stiffened gas (stiffenedGas) . 10
3.5 Jones Wilkins Lee (JWL) . 11

3.5.1 Activation Model . 12
3.5.2 Afterburn Models . 13

3.6 Cochran Chan (CochranChan) 14

4 Flux Evaluation 15
4.1 Riemann Solvers . 15

4.1.1 HLL . 15
4.1.2 HLLC . 16
4.1.3 AUSM+ (AUSMPlus) 17
4.1.4 Tadmor/Kurganov . 18

4.2 Time integration . 19
4.2.1 Euler . 19
4.2.2 RK2 . 19
4.2.3 RK2-SSP (RK2SSP) 19
4.2.4 RK3-SSP (RK3SSP) 20
4.2.5 RK4 . 20
4.2.6 RK4-SSP (RK4SSP) 20

5 AdaptiveFvMesh 22

2

6 Pre-Processing 24
6.1 setRefinedFields . 24

7 Example Cases 27
7.1 Shock Tube - Two Fluid . 27
7.2 Two charge detonation . 30

References 38

3

1 Introduction

blastFoam is an opensource library based on the framework of OpenFOAM
[OpenCFD Ltd., 2018] to simulate detonation using the five equation model.
Along with the main solver, additional utilities have been added to simplify
case setup.

This purpose of this guide is to serve as both a reference on the governing
equations of blastFoam and the models that have been implemented, as well
as to briefly explain the capabilities of the solver as well as new function-
alities that has been introduced on top of those available in the standard
OpenFOAM-7 [OpenCFD Ltd., 2018].

1.1 System Requirements

blastFoam is currently builds against OpenFOAM-72. Aside from packages
required to compile OpenFOAM, and the libraries and headers produced by
OpenFOAM-7, no other packages are required.

1.2 Downloading

The un-compiled source code can be obtained at https://github.com/

synthetik-technologies/blastfoam

1.3 Compilation

Cloning the blastFoam source code from https://github.com/synthetik-technologies/

blastfoam Then run the ./Allwmake command. Ensure that OpenFOAM-7
has been installed and that the environment has been correctly setup (e.g.
that you have run something like source /path/to/openfoam-7/etc/bashrc.

1.4 Executable

The application to solve these equations is executed by running the blastFoam
command. The executables are stored within the $FOAM USER BIN directory,
and can be run from any directory.

2https://github.com/OpenFOAM/OpenFOAM-7

4

https://github.com/synthetik-technologies/blastfoam
https://github.com/synthetik-technologies/blastfoam
https://github.com/synthetik-technologies/blastfoam
https://github.com/synthetik-technologies/blastfoam
https://github.com/OpenFOAM/OpenFOAM-7

1.5 Getting Help

This guide will attempt to cover the major points of the solver, but for more
in depth question on the equations or models, please see the references listed
in the class header files (*.H). Please report bugs using the issues tab on the
GitHub page.

5

2 Governing equations

The simulation of a collection of highly compressible materials, each governed
by a unique equation of state (EOS), is solved using the five equation model.
U is the vector of conservative variables, volume fraction, mass, momentum,
and energy, F are the fluxes corresponding to the respective conservative
variables, and S is a vector of source terms.

∂tU +∇ · F = S (1)

U =


α1

α1ρ1
α2ρ2
ρu
ρE

F =


α1u
α1ρ1u
α2ρ2u

ρu⊗ u + pI
(ρE + p)u

S =


α1∇ · u

0
0
0
0

 , (2)

where ρ is the mixture density, u mixture velocity, E total energy, p
pressure, and ρi and αi are the density and volume fraction of each phase.
When only two phases are used, we define

α2 = 1− α1. (3)

Additional, the mixture density is found using

ρ =
∑
i

αiρi. (4)

The five equation model transports individual phase masses and volume
fraction, but only considers a mixture velocity, energy, and pressure. This
reduces the number of evolution equations that need to be solved.

The pressure is defined using a specified EOS, where the mixture’s internal
energy, densities, and volume fraction are used to calculate the total pressure
(Eq. (5)). The equations of state are cast in Mie-Gruneisen form, based of
the work of [Zheng et al., 2011].

pi(ρi, ei, ρ) = (Γ(ρi)− 1)ρiei − Π(ρi) (5)

6

3 Equation of states

The mixture pressure is defined in Mie-Gruneisen form as

p =
ρe∑
i αiξi

−
∑

i αiξiΠi∑
i αiξi

, (6)

where

ξi(ρi) =
1

Γi − 1
, (7)

and Πi is a function of the equation of state.

The speed of sound within a given phase is given by

ci =

√∑
i yiξic

2
i∑

i ξi
(8)

with

yi =
αiρi
ρ
, (9)

c2i =
hi − δi
ξi

, (10)

hi =
Γip+ Πi

(Γi − 1)ρi
, (11)

and δi is specific to the equation of state.

7

The equation of states are specified in the MieGruneisenEOSProperties

dictionary using

phases (phase1 phase2 phase3) ;
phase1
{

type JWL;
. . .

}
phase2
{

type vanderWaals ;
. . .

}
phase3
{

type idea lGas ;
. . .

}

The names of the phases are defined by the user, and correspond to the
required initial fields. When two phases are specified, the identity α2 = 1−α1

is used and only one volume fraction is transported. If more than two phases
are specified, however, all volume fractions are transported. The required
fields are the mixture velocity, mixture pressure, mixture internal energy,
and phase specific volume fractions and densities.

NOTE: If the maximum value of internal energy is read as less than or
equal to zero, the internal energy is initialized using the selected equation of
states and the initial pressure and densities. Because the boundary conditions
of internal energy need to be read, it is suggested that ”e” field is initialized
to zero, and allow for the EOS specific initialization of the internal energy
field.

The required entries for all equation of states are

Variable Description
type Equation of state model

residualRho Minimum density
residualAlpha Minimum volume fraction

8

The following equations of state in functional Mie-Gruneisen form were
presented by Zheng et al. [2011].

3.1 Ideal gas (idealGas)

For an ideal gas, the pressure is defined as

pi = (γi − 1)ρiei, (12)

The functions needed for Eq. (5) are

Γi = γi, (13)

Πi = 0, (14)

δi = 0. (15)

Variable Description
γ Specific heat ratio

3.2 Generalized van der Waals gas (vanderWaals)

For a gas described by the generalized van der Waals equation of state, the
pressure is defined as

pi =
γi − 1

1− biρi
(ρiei + aiρ

2
i)− (aiρ

2
i + ci), (16)

Putting the pressure equation in the form of Eq. (5), we obtain

Γi =
γi − 1

1− biρi
+ 1, (17)

Πi =

[
1− γi − 1

1− biρi

]
aiρ

2
i +

[
γi − 1

1− biρi
+ 1

]
ci, (18)

and

δi = −bi
pi + aiρ

2
i

γi − 1
+

(
1− biρi
γ − 1

− 1

)
2aiρi. (19)

9

Variable Description
a Attraction between particles
b Specific volume excluded due to particle volume
c Reference pressure
γ Specific heat ratio

3.3 Tait

For a material obeying the Tait EOS, the pressure is defined as

pi = (γi − 1)ρiei − γi(bi − ai). (20)

where ai, bi, and γi are material properties. In the form of Eq. (5), we have

Γi = γi, (21)

Πi = γi(bi − ai), (22)

and
δi = 0. (23)

Variable Description
a Bulk modulus
b Reference pressure
γ Compressibility

3.4 Stiffened gas (stiffenedGas)

For a material obeying the stiffened EOS, the pressure is defined as

pi = (γi − 1)ρiei − γiai, (24)

where ai and γi are material properties. The functions needed for Eq. (5) are

Γi = γi, (25)

Πi = γiai, (26)

10

δi = 0. (27)

Variable Description
a Reference pressure
γ Compressibility

3.5 Jones Wilkins Lee (JWL)

The more complicated JWL EOS is often used to define energetic materials,
and has a pressure given by

p∗i = Aie
−R1,iV

(
1.0− Γ0

R1,iV

)
+Bie

−R2,iV

(
1.0− Γ0

R2,iV

)
+

Γ0,i(Q+ eρi)

V
(28)

where V = ρ0,i/ρi.

Γi = Γ0,i + 1, (29)

Πi = Γ0,iρi

(
Ai

R1,iρ0,i
e
−
R1,iρ0,i

ρi +
Bi

R2,iρ0,i
e
−
R2,iρ0,i

ρi

)
− Γ0,iQρi

ρ0,i
− pref,i, (30)

and

δi = (31)

Aie
−
R1,iρ0,i

ρi

[
Γ0,i

(
1

R1,iρ0,i
+

1

ρi

)
− R1,iρ0,i

ρ2i

]
1

Γ0,i

(32)

+Bie
−
R2,iρ0,i

ρi

[
Γ0,i

(
1

R2,iρ0,i
+

1

ρi

)
− R2,iρ0,i

ρ2i

]
1

Γ0,i

(33)

− Q

ρ0,i
. (34)

where Q is determined by the afterburn model.

11

Variable Description
A Model coefficient (dimensions of pressure)
B Model coefficient (dimensions of pressure)
R1 Model coefficient
R2 Model coefficient
ρ0 Unreacted or initial density
E0 Initial detonation energy (used to initialize internal energy)
Γ0 Model coefficient

3.5.1 Activation Model

A simple model is available to activate the JWL material based on a deto-
nation velocity. This model uses a field, λa, to track whether a given cell has
been ”turned on” yet. It is 0 if the vdett is less than the distance between
the initiation point and the cell center, and 1 otherwise. The pressure used
in the calculation of fluxes is then given by

pi = λap
∗
i + (1− λa)pref (35)

Variable Description
active Is the activation model in use
points List of activation points
speed Speed of propagation within the material
pRef Reference pressure used before phase is activated

phase1
{

type JWL;
. . .
i n i t i a t i o n
{

a c t i v e yes ;
po in t s ((0 0 0) (0 . 1 0 .1 0 . 1)) ;
speed 5000 ;
pRef 101298;

}

12

}

Note: If the initiation dictionary is not found all cells are treated as activated.

3.5.2 Afterburn Models

When reactions occur over a period of time after the initial charge has been
activated, additional energy can be added that results in higher pressure.
These models are described below.

No Afterburn (none [default])
No additional energy is added.

Constant Afterburn (constant)
A constant amount of afterburn energy is added

Variable Description
Q0 Afterburn energy (dimensions of pressure)

Miller Extension Afterburn Model (Miller)
The model of Miller [1995/ed] uses an evolution equation is used to determine
the fraction of the total amount of afterburn energy added to the system due
to unburnt material. λ is a fraction that has a value between 0 and 1, with
an evolution equation given by

∂λ

∂t
= a(1− λ)mpn, (36)

and the total afterburn energy is found using

Q = λQ0, (37)

Variable Description
a Model constant (units consistent with n)
m Exponent
n Exponent
Q0 Afterburn energy (dimensions of pressure)

13

3.6 Cochran Chan (CochranChan)

The Cochran Chan EOS can be used to describe solid material, and has a
reference pressure given by

pref,i = Ai

(
ρ0,i
ρi

)1−E1,i
−Bi

(
ρ0,i
ρi

)1−E2,i
(38)

The functions used in Eq. (5) are given by

Γi = Γ0,i + 1, (39)

Πi = Γ0,iρi

(
− Ai

(E1,i − 1)ρ0,i

(
ρ0,i
ρi

)1−E1,i
+

Bi

(E2,i − 1)ρ0,i

(
ρ0,i
ρi

)1−E2,i
− e0,i

)
−pref,i,

(40)
and

δi = (41)

Ai

E1,i

[
E1,i
(
ρ0,i
ρi

)−E1,i E1,i − Γ0,i − 1

ρi
+

Γ0,i

ρ0,i

]
1

Γ0,i

(42)

+
Bi

E2,i

[
E2,i
(
ρ0,i
ρi

)−E2,i E2,i − Γ0,i − 1

ρi
+

Γ0,i

ρ0,i

]
1

Γ0,i

(43)

−e0,i. (44)

Variable Description
A Model coefficient (dimensions of pressure)
B Model coefficient (dimensions of pressure)
E1 Model coefficient
E2 Model coefficient
ρ0 Reference density
e0 Reference energy
Γ0 Model coefficient

14

4 Flux Evaluation

blastFoam relies on explicit solutions for the evolution of conservative vari-
ables. This has several benefits in terms of order of accuracy and com-
putational cost. First, higher-order, explicit Runge-Kutta time integration
schemes can be used which allow for fully third order solutions to be obtained.
Secondly, higher order interpolation schemes, such as cubic, are marginally
more computationally expensive than the standard linear interpolation. This
is very different than the higher-order divergence, gradient, and Laplacian
schemes which are significantly more expensive than their linear counterparts,
and are used in implicit solution methods. This allows for use of higher order
schemes without the downside of significant additional computational cost.

All of the methods currently available to calculate the conservative, hy-
perbolic fluxes rely on the owner (own) and neighbour (nei) interpolated
values on a face (also called left and right states). These interpolated values
are found using a combination of a base interpolation scheme (linear or cu-
bic) and flux limiters. OpenFOAM currently has a wide selection of available
limiters such as upwind, Minmod, vanLeer, SuperBee, etc. for scalars, and
upwind, MinmodV, vanLeerV, SuperBeeV, etc. for vectors; all are run-time
selectable.

4.1 Riemann Solvers

The currently available Riemann solvers are described below. For all schemes,
n denotes the surface normal vector, and u = u · n.

4.1.1 HLL

The HLL scheme is based on Toro et al. [1994] in which the contact wave is
neglected. The fluxes take the form

FHLL =


Fown if 0 ≤ Sown
SneiFown−SownFnei+SownSnei(Unei−Uown)

Snei−Sown if Sown ≤ 0 ≤ Snei

Fnei if 0 ≥ Snei

(45)

The owner and neighbor states to approximate the wave propagation
speeds are defined as

Sown = min(uown − cown, ũ− c̃), (46)

15

Snei = max(unei + cnei, ũ+ c̃), (47)

where uK is the normal flux of the respective state, cK is the speed of sound,
and ũ and c̃ are the Roe averages velocities and speed of sounds, respectively.

4.1.2 HLLC

The approximate HLLC Riemann was developed by Toro et al. [1994], and
improves upon the HLL method by providing an estimation of the contact
wave between the owner and neighbour waves. This means that the state
between the owner and neighbour waves now has two states rather than one.
The following fluxes are thus used, using the fact that both pressure and
velocity are constant across the contact wave,

FHLLC =


Fown if 0 ≤ Sown

F∗own if Sown ≤ 0 ≤ S∗

F∗nei if S∗ ≤ 0 ≤ Snei

Fnei if 0 ≥ Snei

(48)

The contact wave speed is given by

S∗ =
ρownuown(Sown − Uown) + ρneiunei(Snei − Unei) + pnei − pown

ρown(Sown − uown)− ρnei(Snei − unei)
(49)

and the pressure in the

p∗K = ρK(SK − UK)(S∗ − uK) + pK (50)

The final fluxes are determined by

FHLLC
∗K =

S∗(SKUK − FK) + SKp∗KD∗
SK − S∗

(51)

D∗ =


0
0
0
n
S∗

 . (52)

16

4.1.3 AUSM+ (AUSMPlus)

The AUSM+ scheme was developed by Luo et al. [2004] and constructs the
fluxes based on the mass flux across the face.

FAUSM+ = 0.5 [Ma∗c∗(Uown + Unei)]− 0.5 [|Ma∗|c∗(Uown + Unei)] + Fp,
(53)

Fp =


0
0
0
p∗n
p∗

 . (54)

The star state variables are written as

c∗ = 0.5(cown + cnei), (55)

Ma∗ = 0.5(M+
4,own +M−

4,nei), (56)

and
P∗ = 0.5(P+

5,own + P−5,nei), (57)

where
M±

1 (Ma) = 0.5(Ma± |Ma|), (58)

M±
2 (Ma) =

{
M±

1 (Ma) if |Ma| ≥ 1

±0.25(Ma± 1)2 else
, (59)

M±
4 (Ma) =

{
M±

1 (Ma) if |Ma| ≥ 1

M±
2 (Ma)

[
1∓ 16βM∓

2 (Ma)
]

else
, (60)

P±5 (Ma) =

{
1

Ma
M±

1 (Ma) if |Ma| ≥ 1

±M±
2 (Ma)

[
(2∓Ma)− 16αMaM∓

2 (Ma)
]

else
,

(61)
with α = 3/16 and β = 1/8.

17

4.1.4 Tadmor/Kurganov

The Tadmor/Kurganov fluxes were developed by Kurganov and Tadmor
[2000]. The rhoCentalFoam solver [OpenCFD Ltd., 2018, Greenshields et al.,
2010] utilizes this scheme, which has been ported to the current framework.
Two run-time selectable options (e.g. Kurganov or Tadmor) are available;
both follow the same general procedure with a slight difference in the calcu-
lation of coefficients.

The Kurganov scheme defines

a+ = max(max(uown + cown, unei + cnei), 0), (62)

a− = min(nin(uown − cown, unei − cnei), 0), (63)

aown =
a+

a+ + a−
, (64)

anei =
a−

a+ + a−
, (65)

and

a =
a−a+

a+ + a−
. (66)

The Tadmor scheme defines aown = anei = 0.5 and a = max(|a−|, |a+|).
The volumetric fluxes are written

φown = uownaown − a, (67)

and
φnei = uneianei + a. (68)

The resulting fluxes are

FKT = (φownUown + φneiUnei) + Fp, (69)

with

Fp =


0
0
0

(aownpown + aneipnei)n
a(pown − pnei)

 . (70)

18

4.2 Time integration

The addition of higher order time integration has been added allowing for
fully third order accurate solutions to the evolution equations. This is a major
benefit in comparison to standard OpenFOAM time integration which is at
most second order due to the limitation on the implicit time evolution. Below
are the currently available time integration schemes and the mathematical
steps associated with them. The superscript n denotes the state at the
beginning of the current time step, (i) denotes the i-th step, and n + 1
denotes final state.

4.2.1 Euler

Standard first order time integration

Un+1 = Un −∆t∇ · Fn (71)

4.2.2 RK2

Standard second-order Runge-Kutta method (mid point):

U(1) = Un − 1

2
∆t∇ · Fn (72)

Un+1 = Un −∆t∇ · F(1) (73)

4.2.3 RK2-SSP (RK2SSP)

Second-order, strong-stability-preserving Runge-Kutta method [Spiteri and
Ruuth, 2002]:

U(1) = Un − 1

2
∆t∇ · Fn (74)

Un+1 =
1

2

(
Un + U(1) −∆t∇ · F(1)

)
. (75)

19

4.2.4 RK3-SSP (RK3SSP)

Third-order, strong-stability-preserving Runge-Kutta method [Spiteri and
Ruuth, 2002]:

U(1) = Un −∆t∇ · Fn (76)

U(2) =
1

4

(
3Un + U(1) −∆t∇ · F(1)

)
(77)

Un+1 =
1

3

(
3Un + 2U(2) − 2∆t∇ · F(1)

)
(78)

4.2.5 RK4

Standard fourth-order Runge-Kutta method:

U(1) = Un − 1

2
∆t∇ · Fn (79)

U(2) = U(1) − 1

2
∆t∇ · F(1) (80)

U(3) = Un −∆t∇ · F(2) (81)

Un+1 = Un − 1

6
∆t∇ ·

(
Fn + 2F(1) + 2F(2) + F(3)

)
(82)

4.2.6 RK4-SSP (RK4SSP)

Fourth-order, strong-stability-preserving Runge-Kutta method [Spiteri and
Ruuth, 2002]:

U(i) =
i−1∑
k=0

(
aikU

(k) + ∆tβik∇ · F(k)
)

(83)

Table 1: aik
0 1
1 649

1600
951
1600

2 53989
2500000

4806213
20000000

23619
32000

3 1
5

6127
30000

7873
30000

1
3

0 1 2 3

20

Table 2: βik
0 1
1 −10890423

25193600
5000
7873

2 −102261
5000000

−5121
20000

7873
10000

3 1
10

1
6

0 1
6

0 1 2 3

21

5 AdaptiveFvMesh

A modified version of dynamicRefineFvMesh which uses octree refinement
has been added. The modified version allows for both 2D and 3D adap-
tive refinement. The 3D refinement is done using the standard OpenFOAM
implementation, the authors of the 2D refinement have been included in
hexRef2D.H. The selection of 2D or 3D refinement is done using the number
of solution directions and the user is not required to specify the number of
refined dimensions. The refinement criteria is based on the work of Zheng
et al. [2008], and uses the density gradient to determine what cell should be
refined.

Additionally, the option to begin unrefinement at a designated time (be-
ginUnrefine) has been added, and can be useful when several time steps are
required for a cell to become activated.

OpenFOAM-7 is currently limited in it’s ability to dynamically load bal-
ance the adaptive mesh, but this is a topic of continuing study.

An example of the optional dynamicMeshDict for use with adaptive-
FvMesh class

dynamicFvMesh adaptiveFvMesh ;

// How o f t en to r e f i n e
r e f i n e I n t e r v a l 1 ;

// When to begin unref inement
beg inUnre f ine 1e−5;

// F i e ld to be re f inement on
// (e r r o r f i e l d i s s p e c i f i c to blastFoam)
f i e l d e r r o r ;

// Ref ine f i e l d in between lower . . upper
l owerRe f ineLeve l 1e−2;
upperRef ineLeve l 1 e6 ;

// I f va lue < u nr e f i n e Le ve l u n r e f i n e
u n r e f i n e Le ve l 1e−2;

22

// Number o f c e l l s between l e v e l
nBuf ferLayers 1 ;

// Ref ine c e l l s only up to maxRefinement l e v e l s
maxRefinement 4 ;

// Stop re f inement i f maxCells reached
maxCells 1000000;

// Flux f i e l d and correspond ing v e l o c i t y f i e l d .
// Fluxes on changed f a c e s get r e c a l c u l a t e d by
// i n t e r p o l a t i n g the v e l o c i t y .
// Defau l t i s none
co r r e c tF l uxe s
(

(phi none)
(own none)
(ne i none)
(alphaPhi . copper none)
(alphaPhi . gas none)
(rhoPhi none)
(alphaRhoPhi . copper none)
(alphaRhoPhi . gas none)
(rhoEPhi none)
(rhoUPhi none)

) ;

// Write the re f inement l e v e l as a v o l S c a l a r F i e l d
dumpLevel t rue ;

23

6 Pre-Processing

6.1 setRefinedFields

This is a modified version of the setFields utility in the standard OpenFOAM,
however, the ability to refine a setField has been added. This is extremely
beneficial when you a small volume needs to be set within a set of very large
computational cells. The same functionality present in the adaptiveFvMesh

is present allowing for 2D and 3D geometries to be set. The utility works
by setting the default field values, setting the cell or face sets, then checking
the difference in one field across all faces. Where residuals occur above a
certain user-defined threshold, the mesh is refined. Additionally, by setting
the ”error” field to a value greater than zero, the entire region it is set
in will be refined up to the maximum level, not just the boundaries. The
ability to use a coarse base mesh with temporarily refined regions can greatly
save on computational expense when simulating very large domains with
relatively small areas of interest. A comparison using the standard setFields
and setRefinedFields can be seen in Fig. 1.

(a) Unrefined initial field (b) Refined initial field

Figure 1: Comparison of initial fields using setFields and setRefinedFields

In comparison with setFields, the following entries are specific to setRe-
finedFields

24

Entry Description
field Field name that is used to compute error and refine mesh

maxCells Maximum number of cells allowed
maxRefinement Maximum level of refinement (every level halves cell size)

nBuffLayer Number of cells between level boundaries
backup Dictionary used if a cell set does not contain any cells

An example setFieldsDict is listed below

f i e l d alpha . a i r ;
maxCells 100000;
maxRefinement 3 ;
nBuf ferLayers 1 ;

d e f a u l tF i e l dVa lue s
(

vo lVectorFie ldValue U (0 0 0)
vo lSca l a rF i e ldVa lue p 1 .1 e5
vo lSca l a rF i e ldVa lue alpha . a i r 0
vo lSca l a rF i e ldVa lue rho . a i r 1
vo lSca l a rF i e ldVa lue rho . water 1000

) ;

r e g i o n s
(

cy l i nde rToCe l l
{

p1 (0 0 −1);
p2 (0 0 1) ;
r ad iu s 0 . 1 ;
backup
{

p1 (0 0 −1);
p2 (0 0 1) ;
r ad iu s 0 . 2 ;

}

25

f i e l d V a l u e s
(

vo lSca l a rF i e ldVa lue p 9 .12 e8
vo lSca l a rF i e ldVa lue alpha . a i r 1
vo lSca l a rF i e ldVa lue rho . a i r 1270
vo lSca l a rF i e ldVa lue e r r o r 1

) ;
}

boxToCell
{

boxes ((−0.6 0 .3 −1) (0 . 6 0 .6 1)) ;

f i e l d V a l u e s
(

vo lSca l a rF i e ldVa lue alpha . a i r 1
) ;

}
) ;

NOTE: Because OpenFOAM does not decompose both the time-based
mesh (e.g. 0, 0.001, ... , N) and the base mesh (located in constant), where
both are required to use the mesh modified by setRefinedFields, if a case is
to run in parallel, setRefinedFields must be run in parallel after the case has
been decomposed.

26

7 Example Cases

One validation case and one tutorial case are presented to show the gen-
eral case setup and run procedure. The first is a simple 1-D shock tube
consisting of air and water. The second is a 2D, three-phase case with two
different detonating phases consisting of several detonation points. Only
the new or modified files will be shown, but the other required files such as
blockMeshDict and the boundary conditions can be found in the case direc-
tories (validation/shockTube twoFluid and tutorials/twoChargeDetonation).

7.1 Shock Tube - Two Fluid

The presented case is taken from Zheng et al. [2011] and consists of a gas
using the van der Waals EOS and water using the Stiffened gas EOS initially
separated at the center of the domain. The shock tube is 1 m long, and
discretized in to 300 computational cells.

The left state is defined as:

ρ = 1000 α = 1 p = 1e9. (84)

The right state is defined as:

ρ = 50 α = 0 p = 1e5. (85)

The MieGruneisenEOSProperties dictionary is

phases (f l u i d gas) ;

f l u i d
{

type s t i f f e n e d G a s ;
gamma 4 . 4 ;
a 6 .0 e8 ;
res idua lRho 1e−10;
r e s idua lAlpha 1e−6;

}

gas
{

27

type vanderWaals ;
gamma 1 . 4 ;
a 5 . 0 ;
b 1e−3;
res idua lRho 1e−10;
r e s idua lAlpha 1e−6;

}

and the fvSchemes dictionary is

f luxScheme HLLC;

ddtSchemes
{

d e f a u l t Euler ;
t ime In t eg ra to r RK2SSP;

}

gradSchemes
{

d e f a u l t faceL imited Gauss l i n e a r 1 ;
}

divSchemes
{

d e f a u l t none ;
}

l ap lac ianSchemes
{

d e f a u l t Gauss l i n e a r c o r r e c t e d ;
}

i n t e rpo la t i onSchemes
{

d e f a u l t cub ic ;
r e c o n s t r u c t (alpha) vanLeer 1 ;
r e c o n s t r u c t (rho) vanLeer 1 ;
r e c o n s t r u c t (U) vanLeerV 1 ;

28

r e c o n s t r u c t (e) vanLeer 1 ;
r e c o n s t r u c t (p) vanLeer 1 ;
r e c o n s t r u c t (c) vanLeer 1 ;

}

snGradSchemes
{

d e f a u l t c o r r e c t e d ;
}

As seen above, the HLLC flux scheme is used with cubic interpolation,
vanLeer limiters, and 2nd-order strong-stability-preserving time integration.

The following commands were used to initialize and run the case in serial

blockMesh

setFields

blastFoam

The results are shown in Fig. 2.

29

 0

 1x10
8

 2x10
8

 3x10
8

 4x10
8

 5x10
8

 6x10
8

 7x10
8

 8x10
8

 9x10
8

 1x10
9

 0 0.2 0.4 0.6 0.8 1

P
re

s
s
u

re
 [

P
a

]

X-Position (m)

Zheng 2011
blastFOAM

(a) Pressure

-100

 0

 100

 200

 300

 400

 500

 0 0.2 0.4 0.6 0.8 1

V
e

lo
c
it
y
 [

m
/s

]

X-Position (m)

Zheng 2011
blastFOAM

(b) X-velocity

Figure 2: Pressure and velocity fields at t = 73 ms

7.2 Two charge detonation

The final case is meant to show the capabilities of blastFoam to solve complex
problems involving multiple phases and detonation dynamics. Two charges,
one composed of C-4 and the other of TNT are detonated in air. The C-4 has
a single detonation point at the center of its circular domain, and the TNT
has three equally spaces detonation points within its rectangular domain.
Fig. 3 shows the initial charge shapes.

30

Figure 3: Initial volume fraction of air

The MieGruneisenEOSProperties dictionary is

phases (c4 tnt gas) ;

c4
{

type JWL;
A 609.77 e9 ;
B 12 .95 e9 ;
R1 4 . 5 ;
R2 1 . 4 ;
Gamma0 0 . 2 5 ;
rho0 1601 ;
E0 9e9 ;
res idua lRho 1e−10;
r e s idua lAlpha 1e−6;

i n i t i a t i o n
{

a c t i v e t rue ;
po in t s ((−0.5 0 .5 0)) ;
speed 7850 ;
pRef 101298;

}
}

31

tnt
{

type JWL;
rho0 1630 ;
A 371.21 e9 ;
B 3 .23 e9 ;
R1 4 . 1 5 ;
R2 0 . 9 5 ;
Gamma0 0 . 3 ;
E0 7e9 ;
res idua lRho 1e−10;
r e s idua lAlpha 1e−6;

i n i t i a t i o n
{

a c t i v e t rue ;
po in t s
(

(0 . 125 0 0)
(0 . 25 0 0)
(0 . 375 0 0)

) ;
speed 7850 ;
pRef 101298;

}
}

gas
{

type idea lGas ;
gamma 1 . 4 ;
r e s idua lAlpha 1e−6;
res idua lRho 1e−10;

}

the HLLC flux scheme is used with cubic interpolation, vanLeer limiters,
and 4th-order strong-stability-preserving time integration. Upwinding is used

32

for volume fraction in order to ensure that the sum of volume fractions is
always equal to one. Due to the fact that all volume fractions are evolved,
more complex limiters are required for general flux limiters to be used. This
could be the focus of future research. Below is the fvSchemes dictionary
specifying these.

f luxScheme HLLC;

ddtSchemes
{

d e f a u l t Euler ;
t ime In t eg ra to r RK4SSP;

}

gradSchemes
{

d e f a u l t faceL imited Gauss l i n e a r 1 ;
}

divSchemes
{

d e f a u l t none ;
}

l ap lac ianSchemes
{

d e f a u l t Gauss l i n e a r c o r r e c t e d ;
}

i n t e rpo la t i onSchemes
{

d e f a u l t cub ic ;
r e c o n s t r u c t (alpha) upwind ;
r e c o n s t r u c t (rho) vanLeer ;
r e c o n s t r u c t (U) vanLeerV ;
r e c o n s t r u c t (e) vanLeer ;
r e c o n s t r u c t (p) vanLeer ;
r e c o n s t r u c t (c) vanLeer ;

33

}

snGradSchemes
{

d e f a u l t c o r r e c t e d ;
}

Because the circular domain is not well represented by the hexahedral
mesh generated by blockMesh, refinement around this region is used. A
maximum of four levels of refinement is used, with two cells between each
level. This allows for a more accurate initial mass of the charges, and provides
better initial resolution of the solution. The setRefinedFields utility is used
where the setFieldsDict is

f i e l d alpha . gas ;
maxCells 100000;
maxRefinement 4 ;
nBuf ferLayers 2 ;

d e f a u l tF i e l dVa lue s
(

vo lVectorFie ldValue U (0 0 0)
vo lSca l a rF i e ldVa lue p 101298
vo lSca l a rF i e ldVa lue alpha . gas 1
vo lSca l a rF i e ldVa lue alpha . c4 0
vo lSca l a rF i e ldVa lue alpha . tnt 0
vo lSca l a rF i e ldVa lue rho . gas 1 .225
vo lSca l a rF i e ldVa lue rho . c4 1601
vo lSca l a rF i e ldVa lue rho . tnt 1630

) ;

r e g i o n s
(

cy l i nde rToCe l l
{

p1 (−0.5 0 .5 −1);
p2 (−0.5 0 .5 1) ;

34

rad iu s 0 . 0 5 ;

backup
{

p1 (−0.5 0 .5 −1);
p2 (−0.5 0 .5 1) ;
r ad iu s 0 . 2 ;

}

f i e l d V a l u e s
(

vo lSca l a rF i e ldVa lue alpha . c4 1
vo lSca l a rF i e ldVa lue alpha . gas 0
vo lSca l a rF i e ldVa lue e r r o r 1

) ;
}
boxToCell
{

box (0 −0.05 −1) (0 . 5 0 .05 1) ;

f i e l d V a l u e s
(

vo lSca l a rF i e ldVa lue alpha . tnt 1
vo lSca l a rF i e ldVa lue alpha . gas 0
vo lSca l a rF i e ldVa lue e r r o r 1

) ;
}

) ;

The following commands were used to run the case in parallel

blockMesh

decomposePar

mpirun -np $nProcs setRefineFields -parallel

mpirun -np $nProcs blastFoam -parallel

The instantaneous pressure and velocity fields can be seen in Fig. 4 and
Fig. 5.

35

(a) Pressure

(b) Velocity magnitude

(c) Mesh

Figure 4: Instantaneous fields at t = 0.01 ms

36

(a) Pressure

(b) Velocity magnitude

(c) Mesh

Figure 5: Instantaneous fields at t = 0.1 ms

37

References

Christopher J. Greenshields, Henry G. Weller, Luca Gasparini, and Jason M.
Reese. Implementation of semi-discrete, non-staggered central schemes
in a colocated, polyhedral, finite volume framework, for high-speed vis-
cous flows. International journal for numerical methods in fluids, 63(1):
1–21, 2010. URL http://onlinelibrary.wiley.com/doi/10.1002/fld.

2069/abstract.

Alexander Kurganov and Eitan Tadmor. New high-resolution central schemes
for nonlinear conservation laws and convection–diffusion equations. Jour-
nal of Computational Physics, 160(1):241–282, 2000. URL http://www.

sciencedirect.com/science/article/pii/S0021999100964593.

Hong Luo, Joseph D Baum, and Rainald Löhner. On the computation of
multi-material flows using ALE formulation. Journal of Computational
Physics, 194(1):304–328, February 2004. ISSN 00219991. doi: 10.1016/j.
jcp.2003.09.026.

Philip J. Miller. A Reactive Flow Model with Coupled Reaction Kinetics
for Detonation and Combustion in Non-Ideal Explosives. MRS Online
Proceedings Library Archive, 418, 1995/ed. ISSN 0272-9172, 1946-4274.
doi: 10.1557/PROC-418-413.

OpenCFD Ltd. OpenFOAM - The Open Source CFD Toolbox - User’s Guide.
United Kingdom, 2 edition, 2018.

Keh-Ming Shyue. A Fluid-Mixture Type Algorithm for Compressible Multi-
component Flow with Mie–Grüneisen Equation of State. Journal of Com-
putational Physics, 171(2):678–707, August 2001. ISSN 00219991. doi:
10.1006/jcph.2001.6801.

Raymond J. Spiteri and Steven J. Ruuth. A New Class of Optimal High-
Order Strong-Stability-Preserving Time Discretization Methods. SIAM
Journal on Numerical Analysis, 40(2):469–491, January 2002. ISSN 0036-
1429, 1095-7170. doi: 10.1137/S0036142901389025.

Eleuterio F. Toro, Michael Spruce, and William Speares. Restoration of the
contact surface in the HLL-Riemann solver. Shock waves, 4(1):25–34, 1994.

38

http://onlinelibrary.wiley.com/doi/10.1002/fld.2069/abstract
http://onlinelibrary.wiley.com/doi/10.1002/fld.2069/abstract
http://www.sciencedirect.com/science/article/pii/S0021999100964593
http://www.sciencedirect.com/science/article/pii/S0021999100964593

H. W. Zheng, C. Shu, Y. T. Chew, and N. Qin. A solution adaptive simu-
lation of compressible multi-fluid flows with general equation of state. In-
ternational Journal for Numerical Methods in Fluids, 67(5):616–637, 2011.
ISSN 1097-0363. doi: 10.1002/fld.2380.

H.W. Zheng, C. Shu, and Y.T. Chew. An object-oriented and quadrilateral-
mesh based solution adaptive algorithm for compressible multi-fluid flows.
Journal of Computational Physics, 227(14):6895–6921, July 2008. ISSN
00219991. doi: 10.1016/j.jcp.2008.03.037.

39

	Introduction
	System Requirements
	Downloading
	Compilation
	Executable
	Getting Help

	Governing equations
	Equation of states
	Ideal gas (idealGas)
	Generalized van der Waals gas (vanderWaals)
	Tait
	Stiffened gas (stiffenedGas)
	Jones Wilkins Lee (JWL)
	Activation Model
	Afterburn Models

	Cochran Chan (CochranChan)

	Flux Evaluation
	Riemann Solvers
	HLL
	HLLC
	AUSM+ (AUSMPlus)
	Tadmor/Kurganov

	Time integration
	Euler
	RK2
	RK2-SSP (RK2SSP)
	RK3-SSP (RK3SSP)
	RK4
	RK4-SSP (RK4SSP)

	AdaptiveFvMesh
	Pre-Processing
	setRefinedFields

	Example Cases
	Shock Tube - Two Fluid
	Two charge detonation

	References

